Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Microbiol Spectr ; 10(3): e0195621, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1846337

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a respiratory infectious disease responsible for many infections worldwide. Differences in respiratory microbiota may correlate with disease severity. Samples were collected from 20 severe and 51 mild COVID-19 patients. High-throughput sequencing of the 16S rRNA gene was used to analyze the bacterial community composition of the upper and lower respiratory tracts. The indices of diversity were analyzed. When one genus accounted for >50% of reads from a sample, it was defined as a super dominant pathobiontic bacterial genus (SDPG). In the upper respiratory tract, uniformity indices were significantly higher in the mild group than in the severe group (P < 0.001). In the lower respiratory tract, uniformity indices, richness indices, and the abundance-based coverage estimator were significantly higher in the mild group than in the severe group (P < 0.001). In patients with severe COVID-19, SDPGs were detected in 40.7% of upper and 63.2% of lower respiratory tract samples. In patients with mild COVID-19, only 10.8% of upper and 8.5% of lower respiratory tract samples yielded SDPGs. SDPGs were present in both upper and lower tracts in seven patients (35.0%), among which six (30.0%) patients possessed the same SDPG in the upper and lower tracts. However, no patients with mild infections had an SDPG in both tracts. Staphylococcus, Corynebacterium, and Acinetobacter were the main SDPGs. The number of SDPGs identified differed significantly between patients with mild and severe COVID-19 (P < 0.001). SDPGs in nasopharyngeal microbiota cause secondary bacterial infection in COVID-19 patients and aggravate pneumonia. IMPORTANCE The nasopharyngeal microbiota is composed of a variety of not only the true commensal bacterial species but also the two-face pathobionts, which are one a harmless commensal bacterial species and the other a highly invasive and deadly pathogen. In a previous study, we found that the diversity of nasopharyngeal microbiota was lost in severe influenza patients. We named the genus that accounted for over 50% of microbiota abundance as super dominant pathobiontic genus, which could invade to cause severe pneumonia, leading to high fatality. Similar phenomena were found here for SARS-CoV-2 infection. The diversity of nasopharyngeal microbiota was lost in severe COVID-19 infection patients. SDPGs in nasopharyngeal microbiota were frequently detected in severe COVID-19 patients. Therefore, the SDPGs in nasopharynx microbiota might invade into low respiratory and be responsible for secondary bacterial pneumonia in patients with SARS-CoV-2 infection.


Subject(s)
Bacterial Infections , COVID-19 , Coinfection , Microbiota , Bacteria/genetics , Bacterial Infections/epidemiology , Coinfection/microbiology , Humans , Microbiota/genetics , Nasopharynx , RNA, Ribosomal, 16S/genetics , SARS-CoV-2
2.
Clin Lab ; 67(2)2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-1094345

ABSTRACT

BACKGROUND AND METHODS: 2019 Corona Virus Disease (COVID-19) caused by SARS-CoV-2 is still pandemic now. RT-qPCR detection was the most common method for the diagnosis of SARS-CoV-2 infection, facilitated by amounts of nucleic acid testing kits. However, the accuracy of nucleic acid detection is affected by various factors such as specimen collection, specimen preparation, reagents deficiency, and personnel quality. RESULTS: In this study, we found that unmatched virus preservation solution will inhibit N gene and OFR-1ab gene (two independent genes of SARS-CoV-2) amplification in one-step detection reagent. CONCLUSIONS: Despite just being a particular phenomenon we found in our work to fight 2019-nCoV, we concluded that unmatched virus preservation solution may have an inhibitory effect on SARS-CoV-2 nucleic acid detection which may lead to incorrect clinical diagnosis.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 , Genes, Viral/drug effects , Organ Preservation Solutions/pharmacology , SARS-CoV-2 , Specimen Handling , COVID-19/diagnosis , COVID-19/virology , Diagnostic Errors/prevention & control , Humans , Reagent Kits, Diagnostic/standards , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Specimen Handling/adverse effects , Specimen Handling/methods
SELECTION OF CITATIONS
SEARCH DETAIL